Dynamic cerebral autoregulation during exhaustive exercise in humans.
نویسندگان
چکیده
We investigated whether dynamic cerebral autoregulation is affected by exhaustive exercise using transfer-function gain and phase shift between oscillations in mean arterial pressure (MAP) and middle cerebral artery (MCA) mean blood flow velocity (V(mean)). Seven subjects were instrumented with a brachial artery catheter for measurement of MAP and determination of arterial Pco(2) (Pa(CO(2))) while jugular venous oxygen saturation (Sv(O(2))) was determined to assess changes in whole brain blood flow. After a 10-min resting period, the subjects performed dynamic leg-cycle ergometry at 168 +/- 5 W (mean +/- SE) that was continued to exhaustion with a group average time of 26.8 +/- 5.8 min. Despite no significant change in MAP during exercise, MCA V(mean) decreased from 70.2 +/- 3.6 to 57.4 +/- 5.4 cm/s, Sv(O(2)) decreased from 68 +/- 1 to 58 +/- 2% at exhaustion, and both correlated to Pa(CO(2)) (5.5 +/- 0.2 to 3.9 +/- 0.2 kPa; r = 0.47; P = 0.04 and r = 0.74; P < 0.001, respectively). An effect on brain metabolism was indicated by a decrease in the cerebral metabolic ratio of O(2) to [glucose + one-half lactate] from 5.6 to 3.8 (P < 0.05). At the same time, the normalized low-frequency gain between MAP and MCA V(mean) was increased (P < 0.05), whereas the phase shift tended to decrease. These findings suggest that dynamic cerebral autoregulation was impaired by exhaustive exercise despite a hyperventilation-induced reduction in Pa(CO(2)).
منابع مشابه
Dynamic cerebral autoregulation during and after handgrip exercise in humans.
The purpose of the present study was to examine the effect of static exercise on dynamic cerebral autoregulation (CA). In nine healthy subjects at rest before, during, and after static handgrip exercise at 30% maximum voluntary contraction, the response to an acute drop in mean arterial blood pressure and middle cerebral artery mean blood velocity was examined. Acute hypotension was induced non...
متن کاملComparison of flow and velocity during dynamic autoregulation testing in humans.
BACKGROUND AND PURPOSE We compared relative changes in middle cerebral artery velocity and internal carotid artery flow during autoregulation testing to test the validity of using transcranial Doppler recordings of middle cerebral artery velocity to evaluate cerebral autoregulation in humans. METHODS Seven human volunteers had dynamic autoregulation tested during surgical procedures that incl...
متن کاملCardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes.
Cerebral blood flow (CBF) is stably maintained through the combined effects of blood pressure (BP) regulation and cerebral autoregulation. Previous studies suggest that aerobic exercise training improves cardiac baroreflex function and beneficially affects BP regulation, but may negatively affect cerebral autoregulation. The purpose of this study was to reveal the impact of lifelong exercise on...
متن کاملRegulation of middle cerebral artery blood velocity during recovery from dynamic exercise in humans.
We sought to examine the regulation of cerebral blood flow during 10 min of recovery from mild, moderate, and heavy cycling exercise by measuring middle cerebral artery blood velocity (MCA V). Transfer function analyses between changes in arterial blood pressure and MCA V were used to assess the frequency components of dynamic cerebral autoregulation (CA). After mild and moderate exercise, the ...
متن کاملComparison of static and dynamic cerebral autoregulation measurements.
BACKGROUND AND PURPOSE Cerebral autoregulation can be evaluated by measuring relative blood flow changes in response to a steady-state change in the blood pressure (static method) or during the response to a rapid change in blood pressure (dynamic method). The purpose of this study was to compare the results of the two methods in humans with both intact and impaired autoregulatory capacity. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 288 3 شماره
صفحات -
تاریخ انتشار 2005